• STV
  • MySTV

Lab-grown bone cell breakthrough could 'transform lives'

It is hoped the 3D living bone grafts will be able to repair damaged sections of bone.

New technology that can repair or replace damaged sections of bone could "transform the lives" of patients.

The latest development in a technique known as 'nanokicking' has allowed scientists from the Universities of Glasgow, Strathclyde, the West of Scotland and Galway to grow three-dimensional samples of mineralised bone for the first time.

The technology, originally developed to detect gravitational waves, is being used to generate tissue -engineered bone graft for future use in orthopaedic medicine.

The breakthrough development has already helped to save a dog's leg that would otherwise have been amputated and it is set to be trialled on humans as early as 2020 in the NHS.

Bone is the second most grafted tissue after blood and is used in reconstructive and orthopaedic surgeries.

However surgeons can currently only harvest limited amounts of living bone from the patient for use in graft, and bone from other donors is likely to be rejected by the body.

Instead, surgeons must rely on inferior donor sources which contain no cells capable of regenerating bone, limiting the size of repairs they can effect.

"Having spent 15 years working in astrophysics and gravitational wave detection, it is amazing to see technology arising that could revolutionise key aspects of tissue engineering and regenerative medicine."
Stuart Reid, Professor of Biomedical Engineering at the University of Strathclyde.

In a paper in the journal Nature Biomedical Engineering, researchers describe how they have used measurement technology, based on the sophisticated laser interferometer systems built for gravitational wave detection of astrophysical objects, to turn mesenchymal cells taken from human donors into bone cells in three dimensions.

These 3D living bone grafts, when implanted into patients in the future, will be able to repair or replace damaged sections of bone.

Mesenchymal stem cells, which are naturally produced by the human body in bone marrow, have the potential to differentiate into a range of specialised cell types such as bone, cartilage, ligament, tendon and muscle.

Nanokicking subjects cells to ultra-precise, nanoscale vibrations while they are suspended inside collagen gels.

The process of nanokicking turns the cells in the gels into a 'bone putty' that has potential to be used to heal bone fractures and fill bone where there is a gap.

Using patients' own mesenchymal cells means surgeons will be able to prevent the problem of rejection, and can bridge larger gaps in bone.

Matthew Dalby, professor of cell engineering at the University of Glasgow, is one of the lead authors of the paper.

Professor Dalby said: "This is an exciting step forward for nanokicking, and it takes us one step further towards making the technique available for use in medical therapies.

"We are especially excited by these developments as much of the work we're doing now is funded by Sir Bobby Charlton's landmine charity Find a Better Way, which help individuals and communities heal from the devastating impact of landmines and other explosive remnants of war.

"Now that we have advanced the process to the point where it's readily reproducible and affordable, we will begin our first human trials around three years from now in the NHS along with the Scottish National Blood Transfusion Service and reconstructive and orthopaedic surgeons in Glasgow."

Find A Better Way CEO Lou McGrath said: "Producing synthetic, off-the-shelf bone tissue will potentially transform the lives of untold numbers of civilian landmine blast survivors around the world."

The Find A Better Way project at the University of Glasgow is led by professor of bioengineering Manuel Salmeron-Sanchez.

"The difference between being confined to a wheelchair and being able to use a prosthesis could be only a few centimetres of bone."
Prof Manuel Salmeron-Sanchez

The project team will combine the bone putty with large 3D printed scaffolds to fill even larger bone defects.

Prof Salmeron-Sanchez recently visited Cambodia to meet local people who have suffered landmine-related injuries.

He said: "For many people who have lost legs in landmine accidents, the difference between being confined to a wheelchair and being able to use a prosthesis could be only a few centimetres of bone".

Professor Dalby added: "In partnership with Find A Better Way, we have already proven the effectiveness of our scaffolds in veterinary medicine, by helping to grow new bone to save the leg of a dog who would otherwise have had to have it amputated.

"Combining bone putty and mechanically strong scaffolds will allow us to address large bone deficits in humans in the future."

Some of the technology which underpins the nanokicking technique was originally developed by astrophysicists working on the search for gravitational waves, ripples in spacetime caused by massive events such as the collision of black holes.

Stuart Reid, Professor of Biomedical Engineering at the University of Strathclyde said: "Having spent 15 years working in astrophysics and gravitational wave detection, it is amazing to see technology arising that could revolutionise key aspects of tissue engineering and regenerative medicine."

Download: The STV News app is Scotland's favourite and is available for iPhone from the App store and for Android from Google Play. Download it today and continue to enjoy STV News wherever you are.

One account. All of STV.

This field is required. That doesn't look like a valid e-mail format, please check. That e-mail's already in our system. Please try again.
ShowHide
Forgot password?
This field is required. At least 6 characters please. Did you enter your details correctly?
If you've forgotten your details then use the 'Forgot password?' link.
Need to reset your password?

We'll send a link to reset your password to

We've sent you details on how to reset your password

Please check your email and follow the instructions.

Forgotten your email address?

Have you forgotten the email address that you previously joined with? Don't worry, by emailing enquiries@stv.tv we can help.

One account. All of STV.

This field is required. Please enter at least 2 characters
This field is required. Please enter at least 2 characters
At least 6 characters please
ShowHide
This field is required. At least 6 characters please.
You have to be 16 or over to join
This field is required. This doesn't appear to be a valid date
Type your full postcode and select your address This field is required. It doesn't look like you've entered a valid postcode. Can't find your address? Confirm the details you've given us are correct by clicking here

By continuing you agree to our Terms of Use, including our Privacy Policy and Cookie Policy. Any issues contact us.

Upload Profile Picture

Please make sure your image is under 2mb in size and a valid JPG, PNG or GIF.

Are you sure?

Unfortunately, you'll be unable to access our premium content. We’ll be sorry to see you go, but if you change your mind you can rejoin us at any time.

Please verify your STV account

Please verify your STV account using the email we sent you. If you have lost the email, we can send you another one, just click the button below.

Thanks

We've sent you a new verification email.
Please check your email and follow the instructions to verify your account.

Welcome to STV
Thanks for joining us.

Oops!

Sorry, you must be at least 12 years old to place a vote for your Real Hero.

Please review our Voting Terms of Use for more information.

Oops!

Sorry! It seems that you are using a browser that is incompatible with our voting service.

To register your vote please copy the below URL in to your regular mobile browser. We recommend Google Chrome, or Safari.

http://shows.stv.tv/real-heroes/voting

Oops!

Sorry, you seem to have already voted in this category.

Thanks for voting

Now share your vote with friends on your social network

Share on twitter Share on facebook

Cast your vote

Please register or sign in to continue.

Cast your vote

This field is required. This doesn't appear to be a valid date

Cast your vote

Please fill out this form to cast your vote. As you are under 16 years old you will not create an STV account. Why do we need these details?

This field is required. Please enter at least 2 characters
This field is required. Please enter at least 2 characters
This field is required. That doesn't look like a valid e-mail format, please check.
Location This field is required.
Parental Consent This field is required.

That's you. All that's left is to click the 'Submit Vote' button below. By doing so, you confirm that you and your parent or guardian have read and accept our Voting Terms of Use, Privacy Policy and Cookie policy, and that the details you have entered are correct. We'll look after them as carefully as if they were our own.