• STV
  • MySTV

Mini human hearts grown to find cure for disease causing sudden death

Abertay University scientists develop organs, which beat on own accord, to study heart hypertrophy.

Heart cells (cardiomyocytes) sequence 2 - from Abertay University - scientist grown mini beating hearts to find a cure for heart hypertrophy.
Abertay University

Miniature human hearts are being grown by scientists in an attempt to find a cure for the disease which can lead to sudden death.

Abertay University researchers have developed the organs, which beat on their own accord, to study heart hypertrophy.

Made from stem cells, the tiny hearts are just 1mm in diameter and contract at around 30 beats per minute.

Although healthy to begin with, the scientists are using chemicals to simulate the physiological conditions that will make them become hypertrophic - enlarged, due to abnormal growth of the cells that make up the heart (cardiomyocytes).

Once diseased, the hearts are then treated with newly developed medications to see if they can prevent the damage from occurring.

Prof Nikolai Zhelev, who is leading this research, explains: “Although human hearts have been grown in labs before, this is the first time it has ever been possible to induce disease in them.

“Heart hypertrophy can be hereditary, can be caused by diseases such as diabetes, or can be caused by doing too much strenuous exercise.

"The disease causes the heart muscle to thicken and stiffen, and makes it harder for the heart to pump blood around the body.

"In some people, a life-threatening abnormal heart rhythm will develop, and this is the most common cause of sudden death in young people.

“Although there are treatments, these only help to control the symptoms, and there is no known cure at the moment.”

However, it is hoped the miniature hearts being grown in Prof Zhelev’s lab could help change that.

Using biosensors, Professor Zhelev has been able to label specific molecules within the miniature hearts to see which pathway they follow.

By establishing which molecules cause the hearts to become hypertrophic, he has been able to target drugs at these molecules and prevent them from going down the path they would usually take, and prevent them from becoming hypertrophic.

He added: “We've tested a number of different compounds on these hearts - some of them entirely new ones that haven’t been tested in humans yet, which is why we’re testing them on these hearts we’ve grown in the lab.

“One of these compounds, however, is a drug that we have developed which has just completed phase-two clinical trials in cancer patients and has had very positive results.

“Although heart cells are the only ones in the body that will never get cancer, we noticed that the pathways the molecules in hypertrophic hearts follow are similar to those followed by molecules in cancerous cells, so we thought testing this new drug on these hearts might have the same positive effect. And this has certainly proved to be the case.

“Some of the compounds we’ve tested have had undesirable effects - such as increasing the number of beats the hearts do per minute and making them stop beating - but others, such as the new cancer drug that is in development, have managed to protect the hearts and prevent them from becoming hypertrophic.

“We are still testing new drugs using this system to find new compounds with better efficiency and fewer side-effects.

“Once we know exactly which compounds work and which don’t we’ll begin developing new drugs which will then undergo further tests, before eventually being trialled in humans.

"Although there is still a long way to go before the drugs become available commercially, we are extremely hopeful that we will one day be able to stop heart hypertrophy from developing in those at risk of the disease."

To move the experiments further along, Prof Zhelev has begun working with Professor Jim Bown – a systems biologist who uses computer models and games technology to visualise cell behaviour.

He has started taking the data from Prof Zhelev’s experiments to create computer models that will predict how the cells are likely to grow.

This means that, rather than merely looking at a set of mathematical equations, Prof Zhelev will be able to see how the cells he is growing are likely to develop over time and how they will be affected by a particular drug.

Working with partners at St Andrews and Edinburgh universities, Prof Bown has already shown that this technology can inform experiments in cancer.

This research with heart hypertrophy is an exciting new development and the model could, eventually, be used to help find cures and preventative treatments for other types of diseases as well.

Prof Bown said: “By creating interactive models and interactive animations which visualise cell growth, we are able to simulate what would happen if different doses and combinations of drugs are applied to cancerous cells, and to predict how they will affect cell growth.

“Because the signalling pathways in cancer cells and hypertrophic heart cells are so similar, we’ve been able to adapt this technology and apply it to cardiomyocytes.

“The way this will work is by taking information about how the cells grow from Nikolai initially, building models based on that data and making suggestions to him about which experiments to try out next. So we’re carrying out a mix of experimental and theoretical biology here, using complex new technology to help us better understand the systems we’re working with.

“Ultimately, the aim is to reduce the number of wet-lab experiments that Nikolai needs to do in order to find the drugs that are most likely to prevent heart hypertrophy from developing.”

One account. All of STV.

This field is required. That doesn't look like a valid e-mail format, please check. That e-mail's already in our system. Please try again.
ShowHide
Forgot password?
This field is required. At least 6 characters please. Did you enter your details correctly?
If you've forgotten your details then use the 'Forgot password?' link.
Need to reset your password?

We'll send a link to reset your password to

We've sent you details on how to reset your password

Please check your email and follow the instructions.

Forgotten your email address?

Have you forgotten the email address that you previously joined with? Don't worry, by emailing enquiries@stv.tv we can help.

One account. All of STV.

This field is required. Please enter at least 2 characters
This field is required. Please enter at least 2 characters
At least 6 characters please
ShowHide
This field is required. At least 6 characters please.
You have to be 16 or over to join
This field is required. This doesn't appear to be a valid date
Type your full postcode and select your address This field is required. It doesn't look like you've entered a valid postcode. Can't find your address? Confirm the details you've given us are correct by clicking here

By continuing you agree to our Terms of Use, including our Privacy Policy and Cookie Policy. Any issues contact us.

Upload Profile Picture

Please make sure your image is under 2mb in size and a valid JPG, PNG or GIF.

Are you sure?

Unfortunately, you'll be unable to access our premium content. We’ll be sorry to see you go, but if you change your mind you can rejoin us at any time.

Please verify your STV account

Please verify your STV account using the email we sent you. If you have lost the email, we can send you another one, just click the button below.

Thanks

We've sent you a new verification email.
Please check your email and follow the instructions to verify your account.

Welcome to STV
Thanks for joining us.

Oops!

Sorry, you must be at least 12 years old to place a vote for your Real Hero.

Please review our Voting Terms of Use for more information.

Oops!

Sorry! It seems that you are using a browser that is incompatible with our voting service.

To register your vote please copy the below URL in to your regular mobile browser. We recommend Google Chrome, or Safari.

http://shows.stv.tv/real-heroes/voting

Oops!

Sorry, you seem to have already voted in this category.

Thanks for voting

Now share your vote with friends on your social network

Share on twitter Share on facebook

Cast your vote

Please register or sign in to continue.

Cast your vote

This field is required. This doesn't appear to be a valid date

Cast your vote

Please fill out this form to cast your vote. As you are under 16 years old you will not create an STV account. Why do we need these details?

This field is required. Please enter at least 2 characters
This field is required. Please enter at least 2 characters
This field is required. That doesn't look like a valid e-mail format, please check.
Location This field is required.
Parental Consent This field is required.

That's you. All that's left is to click the 'Submit Vote' button below. By doing so, you confirm that you and your parent or guardian have read and accept our Voting Terms of Use, Privacy Policy and Cookie policy, and that the details you have entered are correct. We'll look after them as carefully as if they were our own.